
TIME SERIES ANALYSIS WITH AXO-AXONIC CONNECTIONS

IN NEURAL NETWORKS∗

Mingo L.F. Castellanos J. Arroyo F.

Dept. OEI - Escuela Informática Dept. IA - Facultad Informática Dept. LPSI - Escuela Informática

Universida Politécnica de Madrid Universida Politécnica de Madrid Universida Politécnica de Madrid

Crta. Valencia km. 7 Campus de Montegancedo Crta. Valencia km. 7

28031 Madrid - Spain 28660 Madrid - Spain 28031 Madrid - Spain

lfmingo@eui.upm.es jcastellanos@fi.upm.es farroyo@eui.upm.es

Abstract—This paper shows properties of neu-
ral networks with axo-axonic connections when
dealing with time series learning. Such neural
networks can perform a global Taylor series anal-
ysis provided they use linear activation func-
tions. Moreover, when forecasting periodic sig-
nals, sinusoidal activation function can be used
to obtain a Fourier analysis. The mean squared er-
ror of these nets can be controlled varying the
number of hidden layers in such a way that a
neural net with n hidden layers outputs a (n+1)-
degree nonlinear result. Taylor or Fourier coeffi-
cients can be used to setup weight initial values.
This architecture performs a global approxima-
tion instead of a local approximation obtained
by Taylor or Fourier analysis. A stock market ap-
plication is also shown. Main purpose is to per-
form a sensitivity analysis of several stock vari-
ables in order to forecast the IBEX-35 spanish
index. Results are compared to those obtained
with classics methods. A brief survey of classic
time series analysis neural networks is exposed.

Keywords: Neural Networks, Time Series Analy-
sis, Function Approximation, Signal Forecasting.

1 Introduction

Neural networks are non-linear systems whose structure
is based on principles observed in biological neuronal
systems. A neural network could be seen as a system
that can be able to answer a query or give an output as
answer to a specific input. The in/out combination, i.e.
the transfer function of the network is not programmed,
but obtained through a ”training” process on empiric
datasets.

In practice the network learns the fuction that links
input together with output by processing correct in-
put/output couples. Actually, for each given input,
within the learning process, the network gives a cer-
tain output which is not exactly the desired output, so
the training algorithm modifies some parameters of the

∗Supported by TIC2003-09319-c03-03 and INTAS INNO 182

network in the desired direction. Hence, every time an
example is input, the algorithm adjusts its network pa-
rameters to the optimal values for the given solution: in
this way the algorithm tries to reach the best solution
for all the examples. These parameters we are speak-
ing about are essentially the weights or linking factors
between each neuron that forms our network.

Neural Networks’ application fields are tipically
those where classic algorithms fail because of their un-
flexibility (they need precise input datasets). Usually
problems with unprecise input datasets are those whose
number of possible input datasets is so big that they
can’t be classified. For example in image recognition
are used probabilistic algoithms whose efficency is lower
than neural networks’ and whose caratheristics are low
flexibility and high development complexity. Another
field where classic algorithms are in troubles is the anal-
isys of those phenomena whose matematical rules are
unknown.

There are indeed rather complex algorithms which
can analyse these phenomena but, from comparisons on
the results, it comes out that neural networks result far
more efficient [20, 19]: these algorithms use Fourier’s
trasform to decompose phenomena in frequential com-
ponents and for this reason they result highly complex
and they can only extract a limited number of har-
monics generating a big number of approximations. A
neural network trained with complex phenomena’s data
is able to estimate also frequential components, this
means that it realizes in its inside a Fourier’s trasform
even if it was not trained for that! One of the most im-
portant neural networks’ applications is undoubtfully
the estimation of complex phenomena such as meteo-
rological, financial, socio-economical or urban events.
Thanks to a neural network it’s possible to predict, an-
alyzing hystorical series of datasets just as with these
systems but there is no need to restrict the problem or
use Fourier’s tranform. A defect common to all those
methods it’s to restrict the problem setting certain hy-
pothesis that can turn out to be wrong. We just have to
train the neural network with hystorical series of data
given by the phenomenon we are studying.

Calibrating a neural network means to determinate

the parameters of the connections (synapsis) through
the training process. Once calibrated there is need to
test the netowrk efficency with known datasets, which
has not been used in the learning process. There is
a great number of Neural Networks which are sub-
stantially distingushed by: type of use, learning model
(supervised/non-supervised), learning algorithm, archi-
tecture, etc.

This paper focuses on supervised networks with the
backpropagation learning algorithm and applied to sig-
nal analysis with a typical feedforward architecture.
Some classic neural architectures (multilayer percep-
tron, time-lag recurrent network, Jordan and Elman
networks and recurrent networks) are briefly explained
and a new architecture (axo-axonic) is also shown in
order to apply such architectures to a given signal fore-
casting and analysis problem.

1.1 Multilayer Perceptron

Multilayer perceptrons (MLPs) are layered feedforward
networks [18] typically trained with static backpropaga-
tion. These networks have found their way into count-
less applications requiring static pattern classification.
Their main advantage is that they are easy to use, and
that they can approximate any input-output map.

In principle, backpropagation provides a way to
train networks with any number of hidden units ar-
ranged in any number of layers [14, 15]. In fact, the
network does not have to be organized in layers - any
pattern of connectivity that permits a partial ordering
of the nodes from input to output is allowed. In other
words, there must be a way to order the units such that
all connections go from ”earlier” (closer to the input) to
”later” ones (closer to the output). This is equivalent to
stating that their connection pattern must not contain
any cycles. Networks that respect this constraint are
called feedforward networks; their connection pattern
forms a directed acyclic graph or dag.

Backpropagation algorithm can be expressed as
equation (1). Note that in order to calculate the er-
ror for unit j, we must first know the error of all its
posterior nodes (forming the set Pj). Again, as long as
there are no cycles in the network, there is an ordering
of nodes from the output back to the input that re-
spects this condition. For example, we can simply use
the reverse of the order in which activity was propa-
gated forward.

δj = f
′

j(netj)
∑

i∈Pj

δjwij (1)

1.2 Jordan/Elman Networks

Jordan and Elman networks extend the multilayer per-
ceptron with context units, which are processing ele-
ments that remember past activity. Context units pro-
vide the network with the ability to extract temporal
information from the data. In Elman networks, the ac-

tivity of the first hidden layer are copied to the context
units, while the Jordan network copies the output of
the network.

Jordan and Elman networks [17, 16] combine the
past values of the context unit with the present input x
to obtain the present net output. The Jordan context
unit acts as a so called lowpass filter, which creates an
output that is the weighted (average) value of some of
its most recent past outputs. The output y of the net-
work is obtained by summing the past values multiplied
by the scalar parameter tn. The input to the context
unit is copied from the network layer, but the outputs
of the context unit are incorporated in the net through
their adaptive weights.

y(n) =
n

∑

i=0

x(n)yn−i (2)

In these networks, the weighting over time is inflexi-
ble since we can only control the time constant (i.e. the
exponential decay). Moreover, a small change in time
is reflected as a large change in the weighting (due to
the exponential relationship between the time constant
and the amplitude). In general, we do not know how
large the memory depth should be, so this makes the
choice of t problematic, without having a mechanism to
adopt it.

In linear systems, the use of past input signals cre-
ates the moving average (MA) models. They can repre-
sent signals that have a spectrum with sharp valleys and
broad peaks. The use of the past outputs creates what
is known as the autoregressive (AR) models. These
models can represent signals that have broad valleys
and sharp spectral peaks. The Jordan net is a restricted
case of a non-linear AR model, while the configuration
with context units fed by the input layer is a restricted
case of non-linear MA model. Elman?s net does not
have a counterpart in linear system theory. These two
topologies have different processing power.

1.3 Time-Lag Recurrent Networks

Time lagged recurrent networks are MLPs extended
with short term memory structures. Most real-world
data contains information in its time structure. Yet,
most neural networks are purely static classifiers. TL-
RNs are the state of the art in nonlinear time series
prediction, system identification and temporal pattern
classification.

We may incorporate time into the design of a neu-
ral network implicitly or explicitly. A straightforward
method of implicit representation of time is to add a
short-term memory structure in the input layer of a
static neural network (e.g., multilayer perceptron).The
resulting configuration is sometimes called a focused
time-lagged feedforward network (TLFN).

The short-term memory structure may be imple-
mented in one of two forms [20], as described here:

• Tapped-Delay-Line (TDL) Memory. This is the

most commonly used form of short-term memory.
It consists of p unit delays with (p + 1) terminals
which may be viewed as a single input-multiple
output network. The memory depth of a TDL
memory is fixed at p, and its memory resolution is
fixed at unity, giving a depth resolution constant
of p.

• Gamma Memory. We may exercise control over the
memory depth by building a feedback loop around
each unit delay. In effect, the unit delay z−1 of the
standard TDL memory is replaced by the transfer
function.

G(z) =
µz−1

1 − 1(1 − µ)z−1
=

µ

z − (1 − µ)
(3)

where µ is an adjustable parameter. For stability,
the only pole of G(z) at z = (1−µ) must lie inside
the unit circle in the z plane. This, in turn, requires
that we restrict the choice of µ to the following
range of values: 0 < m < 2.

The overall impulse response of the gamma mem-
ory, consisting of p sections, is the inverse z trans-
form of the overall transfer function

Gp(z) =

(

µ

z − (1 − µ)

)p

(4)

Denoting the impulse response by gp(n), we have

gp(z) =

(

n − 1
p − 1

)

µp(1 − µ)n−p (5)

where (:) is a binomial coefficient.The overall im-
pulse response gp(n) for varying p represents a dis-
crete version of the integrand of the gamma func-
tion, hence the name gamma memory.

1.4 Recurrent Networks

Fully recurrent networks feed back the hidden layer to
itself. Partially recurrent networks start with a fully
recurrent net [19, 18] and add a feedforward connec-
tion that bypasses the recurrency effectively treating
the recurrent part as a state memory. These recurrent
networks can have an infinite memory depth and thus
find relationships through time as well as through the
instantaneous input space.

We need an algorithm that computes equation (6)
at each time step t. Since we know ek(t) at all times
(the difference between our targets and outputs), we
only need to find a way to compute the second factor
∂yk(t)/∂wij .

−
∂E(t)

∂wij

=
∑

k∈U

−∂E(t)

∂yk(t)

∂yk(t)

∂wij

=
∑

k∈U

ek(t)
∂yk(t)

∂wij

(6)

The key to understanding RNs is to appreciate what
this factor expresses. It is essentially a measure of the
sensitivity of the value of the output of unit k at time
t to a small change in the value of wij , taking into
account the effect of such a change in the weight over
the entire network trajectory from t0 to t. Note that
wij does not have to be connected to unit k. Thus this
algorithm is non-local, in that we need to consider the
effect of a change at one place in the network on the
values computed at an entirely different place.

pk
ij(t + 1) = f

′

k(netk(t))
∑

I∈U

wkIp
I
ij(t) + δikzj(t) (7)

The algorithm then consists of computing, at each
time step t, the quantities pk

ij(t) using the differences
between targets and actual outputs to compute weight
changes, and the overall correction to be applied to wij

is given by:

∆wij(t) = µ
∑

k∈U ek(t)pk
ij(t)

∆wij =
∑t1

t=t0+1 ∆wij(t)
(8)

2 Axo-axonic Networks

The most usual connection type in neural networks is
the axo-dendritic connection. This connection is based
on the fact that the axon of an afferent neuron is con-
nected to another neuron via a synapse on a dendrite,
and modelized in ANN model by a weighted activa-
tion transfer function. But, there exists many other
connection types as: axo-somatic, axo-axonic and axo-
synaptic [1]. This paper is focused on the second kind
of connection type axo-axonic. Merely, the structure
of the axo-axonic connection can be sketched by three
neurons with a classical axo-dendritic connection and
the synaptic axonal termination of N3 connected to
the synapse S12. The principle consists on propagat-
ing the action of neuron N3 as synapse S12. In order to
model previous connection type, two neural networks
are required [5]. The first (assistant) one will compute
the weight matrix of the second (principal) one. And,
the second network will output a response, using the
previously computed weight matrix, this architecture
is named Enhanced Neural Networks ENN [2, 3, 4].

2.1 Taylor Approximation

Taylor approximation degree 2 of a function n-
differentiable at a point x = a can be obtained using
the following expression as a power series:

f̂(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + e(ξ) (9)

, where ξ belongs to interval [x, a).
If f ′′′(x) is a continuos function in the closed inter-

val [a, x] then this derivate has a maximun M in such

interval, and therefore, the error in the aproximation
(equation 9) is measure by [8, 9]:

max |f ′′′(x)| ≤ M (10)

|e(x)| ≤
1

6
M |x − a|

3
(11)

In case an approximation degree n of function f(x)
must be obtained, previous equations can be general-
ized in order to get:

f̂(x) =

n
∑

i=0

f i)(a)(x − a)i

i!
+

fn+1)(ξ)(x − a)(n+1)

(n + 1)!

(12)
provided following constraints are verified:

1. f i)(x) corresponds to the i-derivate of f(x). Be-
sides f0)(x) = f(x).

2. If i = 0 then i! = 1.

3. ξ is a point at interval [x, a).

The approximation error, that is f(x)− f̂(x), can be
measured if the (n + 1)-derivate is a continuos function
in interval [a, x). Approximation error has a maximum
defined by:

|e(x)| ≤
1

(n + 1)!
M |x − a|

(n+1)
(13)

2.2 ENN as Taylor series approximators.

Above section has shown that a function can be approx-
imated with a given error using a polynomial P (x) =

f̂(x) with a degree n. The error f(x) − P (x) is mea-
sure by equation (13) in such a way that in order
to find a suitable approximation (error lower than a
known threshold) it is only needed to compute suces-
sive derivates of function f(x) until a certain degree
n.

Enhanced Neural Networks behave as n-degree poly-
nomial approximators depending on the number of hid-
den layer in the architecture. In order to obtain such
behavior all activation functions of the net must be lin-
eal function f(x) = ax + b.

As shown in figure 1 and output equations, the num-
ber of hidden layers can be increased in order to increase
the degree of the output polynomial, that is, the num-
ber n of hidden layers control, in some sense, the degree
n + 2 of output polynomial of the net.

Table 1 shows how the degree of the output polyno-
mial increases according to the number of hidden layers
in the net.

The only condition that the learning algorithm must
verified is that weights must be adjusted to values re-
lated with the sucesive derivates of function f(x) that
pattern set represents. Usually such function is un-
kown therefore, if the network converges with a low

Table 1: Number hidden layers vs. degree of output
polynomial
Hidden Degree P (x) Output
Layers Polynomial

0 2 o = a2x
2 + a1x + a0

1 3 o = a3x
3 + a2x

2 + a1x + a0

· · · · · · · · ·

n n + 2 o =
∑n+2

i=0 aix
i

mean squared error then all weights of the net have
converged to the derivates of function f(x) (the pat-
tern set unkown function), and such weights will gather
some information about the function and its derivates
that the pattern set represents.

As an example, function f(x) = sen(x)cos(x) can be
approximated using equation (12), with a given point
a = 0. Such equation can be reduced to f̃(x) = x− 4

6x3,
using a polynomial P (x) degree 3. This is a mathemat-
ical approach, but what happens if such function is the
pattern set to an enhanced neural network mentioned
before?.

A one hidden layer neural network must be used in
order to obtain a 3-degree polynomial as the output
expression. Figure 2 shows such architecture, after the
training stage, the final configuration is shown. Output
equation of the net is o = x− 4

6x3 , equivalent equation

with f̃(x).

Fig.2: Approximation of f(x) = sen(x)cos(x) with a
one hidden layer

The approximation error using net in figure 2 can be
computed using equation (13), and therefore MSE ≤
|e(x)|. Such approximation is not the only one nor the
best one, but it can be computed theoretically in or-
der to provide the net some initial weights in order to
speed up the learning process and to obtain a better
approximation that the initial one with a lower error
ratio. In sumary, Enhanced Neural Networks can be
initialized to some weights computed using the Taylor
Series of the function that the pattern set defines and
after this initial stage the learning algorithm must be
applied in order to achieved the best solution (the one
that improves the Taylor Series error).

Figure 3 shows the surface computed by a net as the
number of hidden layers is increased. The mean squared

o = wx + b =
= (w1x + b1)x + w2x + b2 =
= w1x

2 + (b1 + w2)x + b2

o = w∗(wx + b) + b∗ =
= (w∗

1x + b∗1)[(w1x + b1)x + w2x + b2]+ =
+ w∗

2x + b∗2 =
= Ax3 + Bx2 + Cx + D

Fig.1: ENN architectures and output expressions

error is decreasing as the number of hidden layers goes
up. This figure shows that this kind of neural net is
very suitable when approximating functions, a given
function or a function defined by the pattern set.

2.3 Non-Linear Activation

According to previous ideas, linear ENNs are better
than linear MLPs, or at least, they are able to generate
complex regions in order to divide the output space.
When working with a MLP, only hyperplanes can be
obtained. And moreover, the degree of the output equa-
tion increases according to the number of hidden layers.

In order to obtain a functional basis, one constraint
must be made. It consists on implementing the network
architecture with lineal PEs except the output neurons
of assistant network. These neurons must have an ac-
tivation function g(x) which is used to computed the
functional basis as the application of g(x) to a non lin-
eal combination of inputs. Figure 4 shows an example
of a functional basis and the main network ourput.

Depending on the activation function of output neu-
rons belonging to assistant network, the main network
will output an approximation function based on non
lineal combination of elements belonging to the ba-
sis. That is if a sinusoidal activation function is im-
plemented, then a cuasi-Fourier approximation is com-
puted by the network; is a Ridge activation function
is implemented, then a cuasi-Ridge approximation is
computed and so on.

Main advantage of this new approximation method
is that is absolutely easy to implement. And more-
over, a global approximation to all the pattern set is
perform. This way, if there are enough input patterns,
then the generalization error will be minimized if there
are enough learning iterations.

2.3.1 Enhanced Neural Networks as Universal
Approximators

Along the paper [3], this new architecture has shown
that it is very suitable when dealing with any prob-
lem. Decision surfaces generated by the net are com-
plex enough to represent any data set. The powerfull of
these nets is in the number of hidden layers, that is, in
the degree of the output polinomial associated to one
output unit.

Funahashi Theorem can be directly apply to En-
hanced Neural Networks in order to proof the universal
approximation property of proposed networks, provided
that activation function in hidden and output neurons
belongs to a given class of functions stated by Funa-
hashi. This way, ENN behave as universal approxima-
tors, that is, they are able to learn any pattern set.

3 Stock Market Forecasting Results

Some studies [10, 13] have shown that the mathematical
analysis of stock movements does not work. Technical
and Fundamental Analysts are proven wrong time and
again - and with good reason. The numbers, formulas
and charts that Analysts generate and use are not trad-
ing stocks - real people are trading stocks. No matter
how experienced a Trader may be, there will always be
a degree of subjectivity or even emotion involved in ev-
ery trade. Still, as with any form of prediction there is
always a degree of ambiguity, which can be magnified
further when applied to something as volatile as the
stock market. There will always be errors or ’upsets’ -
but you may find they are few and far in between.

In the past, when trading was not dominated by
computers, most financial analysts used macro and mi-
cro economic theory as well as classical ”linear” mod-
eling techniques [12, 11]. However, today the mar-
ket moves faster and more chaotically, exhibiting dis-
jointed and nonlinear relationships between market

Pattern set defined by f(x, y) = sin(x)ey

2 hidden layers 4 hidden layers 6 hidden layers 8 hidden layers

Fig.3: Surface approximation depending on the number of hidden layers

a) Sinusoidal basis b) 3D Surfaces Approximation

Fig.4: Approximation with sinusoidal activation functions using basis of figure a).

forces. Neural networks can work well [2, 5] because
they are inherently nonlinear and can behave better
than linear models in this environment and they can
be automatically retrained over and over to accommo-
date new behavior in the markets.

The data set has been obtain from the Buse MER-
VAL, Eurostoxx, nikkey, DOW JONES indexes. Each
pattern represents a day in the stock market and it con-
sists on the close value. The pattern set is made up of
4 years. The desired output is the close value of the
DJ Eurostoxx index in time t + 1, that is a forecasting
of the future behavior of the signal, without iterative
prediction.

3.1 Statistical Analysis

The statistical analysis performs an approximation of
the whole pattern set, but it does not divide it into
train, cross validation and test pattern set. We have
studied the correlation among the all six variables in
order to forecast one of them at time t + 1. First of all
this model performs a 99% approximation of all pat-
terns. Figure 5 (first chart) shows that the desired and
output signals are quite similar, but we can see that
the only variable that is really significant is the proper
one that is forecasted. If we use this model we can not
explain the relationship among the all six variables and
output one (EuroStoxx), see table 2.

Next method uses all variables except the forcasting
one. This one achieves a 92% of approximation and
all variables are correlated with the output (see table 3
and figure 5, second chart).

The last model only uses one variable (Dow Jones)
to forecast the desired one (Eurostoxx), figure (5). In
this case, we obtain a 63% of approximation.

Table 2: Statistical Analysis with all variables.
Variable Coeff. Std. Err. t-St. Prob
Eurostoxx 0.9813 0.0082 119.4 0
Nikkey 0.0002 0.0001 1.665 0.0961
Dow 0.0002 0.0003 0.7982 0.4249
Dolar -2.291 4.226 -0.5422 0.5878
Buse 0.0012 0.0024 0.5219 0.6018
Euribor 0.4500 0.4783 0.9409 0.3469
C -2.249 5.9324 -0.0422 0.9665
R-Sq. 0.9948 Mean var 336.81

Table 3: Statistical Analysis with all variables except
the forecasting one.

Variable Coeff. Std. Err. t-St. Prob
Nikkey 0.0114 0.0004 29.592 0
Dow 0.0121 0.0013 0.292 0
Dolar -138.177 15.916 -8.6812 0
Buse -0.0024 0.0097 -0.2553 0.7985
Euribor 38.24 1.403 27.25 0
C 36.081 23.1689 1.5573 0.1197
R-Sq. 0.9206 Mean var 336.86

Table 4: Statistical Analysis with only one variable.
Variable Coeff. Std. Error t-St. Prob
Dow 0.0616 0.0014 42.19 0
C -289.6 14.90 -19.43 0
R-Sq. 0.6396 Mean var 336.86

Fig.5: Results of statistical analysis: a) using all vari-
ables, b) using all variables except the forecasting one,
c)using only the DJ variable.

Pattern set in the training process set consists of 6
variables and the aim is to forecast the second variable
at time t+1. An Enhanced Neural Network with Time-
Delays has been implemented to take advantage of its
forecasting properties against classical Multilayer Per-
ceptron. But, in order to define the best architecture
some genetic controllers has been added. The pattern
set has been splitted into the training, cross validation
and test sets to measure the performance of the net.
After the genetic learning stage we have obtained a
two-hidden layer neural network with 13 and 17 hid-
den units and 5 tap delays with a 10 depth.

Figures 6, 7 and 8 show graphical results of DJ Eu-
rostoxx forecasting at time t + 1. You can see that
the training and cross validation set are quite close to
the desired response, the have a mean squared error
(0.000127, 0.001843) repectively.

Fig.6: Training output and desired output.

Fig.7: Cross Validation output and desired output.

The first 10 outputs of neural network in the test

Table 5: MSE of ENN with genetic controllers with 6
and 4 inputs variables.

Training Cross Validation Test
Mean Squared Error with 6 inputs

0.000127 0.001843 0.023849
Mean Squared Error with 4 inputs

0.000425 0.002143 0.031442

stage are not valid since this architecture needs a depth
of 10 data in order to output a real desired response,
that is the way there exists a great error in the predic-
tion of these 10 outputs (see figure 8), but the rest of
the forecasting results are good enough to consider this
architecture very suitable for this task.

Fig.8: Test output and desired output.

Figure 9 shows the sensitivity analysis of neural net-
works inputs (Euribor, DJ Eurostoxx, Dow Jones, Buse
Merval, Nikkei, USD/Euro) that affect the desired out-
put. Inputs DJ Eurostoxx and Buse Merval are the
most relevant inputs in order to output the DJ Eu-
rostoxx at time t+1. Both of them have a sensitivity
20.8 + 21.4 = 42.2 of all inputs. But if the previous
neural network is only trained with these two inputs
the performance is poor. So, we have to take, at least
a 80% sensitivity, four inputs Euribor, DJ Eurostoxx,
Dow Jones, Buse Merval in order to get 76% of sensi-
tivity.

Fig.9: Sensitivity Analysis.

Taking into account previous considerations, the
neural architecture was modified to get only four in-
puts variables and results are similar to those with six
variables (see table 3.1).

According to figure 5 of statistical analysis, only the
Dow Jones variable is needed to obtain a relatively good
forecasting, but not so closed to desired response as the
neural network output with 4 variables (table 3.1 and
figure 9).

Next figure 10 shows the results of the neural net-
work if we only consider one input (Dow Jones) as in
the statistical analysis. Obtained MSE is 0.0539485 in
the training stage and 0.0584853 in the test stage.

We have to consider that the statistical analysis per-

Fig.10: Training and testing outputs with only one in-
put.

forms the computation over the whole pattern set, it
does not divide the pattern set in traning/test sets.
That is the reason why the test output of the neural
network seems worse than the statistical one, but the
training output of the net is similar to the statistical
one.

4 Conclusions

This paper shows the classical statistical analysis ap-
plied to stock market forcasting and a neural network
approach with axo-axonic controllers. First of all, the
statistical approach does not consider train, cross val-
idation and test pattern sets; that is the reason why
results may appear better than neural results. But, the
neural approach takes into account these three sets in
order to improve the net performance. And if only the
train set is compared with the statistical model results
are better in the NN model.

Artificial Neural Networks can be applied to many
complex problems such as market forecasting. This pa-
per has shown the EuroStoxx index forecasting using a
neural network architecture with axo-axonic controllers
and Time-Delays. Enhanced nets with time-delays is
the best architecture in order to forecast the index, this
is due to the special architecture and the universal ap-
proximation property that this kind of networks has.

Performed sensitivity analisys in the neural network
gives us significant variables in order to obtain a valid
forecasting method. The best model was obtained with
four variables (including the forecasting one) with a re-
ally low error in the test pattern set. If we try to im-
plement a neural architecture with only one variable
(statistical analysis third figure 5) the net behaves bet-
ter than the classical model.

References

[1] Delacour, J.; Apprentissage et Memoire: Une Ap-
proache Neurobiologique. Masson(Ed.) September.
(1987).

[2] Mingo L.F., Arroyo F., Luengo C., Castellanos
J.; Learning HyperSurfaces with Neural Networks.
11th Scandinavian Conference on Image Analysis.
SCIA’99. June 7-11. Kangerlussuaq, Greenland.
Pp: 731-737. 1999.

[3] Mingo L.F., Arroyo F., Luengo C., Castellanos J.;
Enhanced Neural Networks and Medical Imaging.
8th International Conference on Computer Anal-
ysis of Images and Patterns. CAIP’99. September
1-3. Ljubljana, Slovenia. 1999.

[4] Mingo L.F., Giménez V., Castellanos J.; Interpo-
lation of Boolean Functions with Enhanced Neu-
ral Networks. Second Conference on Computer Sci-
ence and Information Technologies. CSIT’99. Au-
gust 17-22. Yerevan, Armenia. 1999.

[5] Mingo L.F., Castellanos J., Giménez V.; A New
Kind of Neural Networks and Its Learning Al-
gorithm. Information Processing and Manage-
ment of Uncertainty in Knowledge Based Systems.
IPMU’98. Paris, France. July 6-10. Pp: 1913-1914.
1998.

[6] Mingo L.F., Aslanyan L., Riazanov V., Castellanos
J., Diaz M.A.; Context Neural Network for Tempo-
ral Correlation and Prediction. International Con-
ference on Neural Networks and Genetic Algo-
rithms. Praha, Czech Republic. Springer: Com-
puter Science. Pp.: 110 - 113. 2001.

[7] Peter Andras: Orthogonal RBF Neural Network
Approximation. Neural Processing Letters, 9(2).
Pp.: 141-151. 1999.

[8] Blum, E. K. & Leong, L.: Approximation The-
ory and Feedforward Networks. Neural Networks,
4. Pp. 511-515. 1991.

[9] Cheney E.W., Chui C.K. & Shumaker L.L.: Ridge
Functions, Sigmoidal Functions and Neural Net-
works. Approximation Therory VII. Academic
Press, Boston. Pp. 158-201. 1992.

[10] Rosenblatt, Taylor S. J.; Modelling Financial Time
Series Chichester: John Wiley and Sons. 1986.

[11] Palus M.; Testing for nonlinearity using redundan-
cies: Quantitative and qualitative aspects. Physica
D. Vol: 80. Pp: 186-205. 1995.

[12] Theiler J., Linsay P. S., Rubin D. M. ; Detect-
ing nonlinearity in data with long coherence times.
Time series prediction: Forecasting the future and
understanding the past. Addison Wesley. Ed.: A.
S. Weigend and N. A. Gershenfeld. Pp: 429-455.
1993.

[13] Hsieh D.A.; Chaos and nonlinear dynamics: Appli-
cations to Financial Markets. Journal of Finance.
Vol: 46, Pp: 1839-1877. 1991.

[14] Hu YH; Pattern Classification with Multiple Clas-
sifiers. Dept. of Elect. Comput. Engineering. Uni-
versity of Wisconsin-Madison. 1996.

[15] Hu YH, Tompkins WJ, Urrusti JL, Afonso VX;
Applications of Artificial Neural Networks for
ECG. Signal Detection and Classification. Journal
of Electrocardiology, Vol. 26, pp. 66-73. 1994.

[16] A. D. Back and A. S. Weigend; A first applica-
tion of independent component analysis to extract-
ing structure from stock returns. Int. J. on Neural
Systems, 8(4):473-484, 1998.

[17] P. Comon; Independent component analysis - a
new concept? Signal Processing, 36:287-314, 1994.

[18] T. M. Cover and J. A. Thomas.; Elements of In-
formation Theory. John Wiley Sons, 1991.

[19] Shigeru Katagiri; Handbook of Neural Net-
works for Speech Processing. Artech House. ISBN
0890069549. 2000

[20] YuHenHu, Jeng-NengHwang; Handbook of Neu-
ral Network Signal Processing VE Profiling. ISBN:
0849323592. CRC Press. September2001

